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Fire management expenditures are heavily af- response of each model may not coincide with what
fected by the success or failure of fire-danger rating might be expected, based on the qualitative descrip-
systems. Presuppression activities, such as aircraft tion.

detection flights and pre-positioning and potential As Rothermel (1983) suggests, it is possible to se-
dispatching of firefighters, are guided by these rat- lect a fuel model, not only from a description of the
ing systems' numerical values. Fire-danger rating physical properties of the vegetation, but also from
systems, however, are based on simplified models of its known fire behavior characteristics. As Brad-
complex, natural phenomena. Consequently neither shaw et al. (1983) state, however, "... currently
the models nor the resultant rating systems com- there is no common measurement of any fire phe-
pletely reflect physical reality. We need to establish nomenon to correlate with NFDRS ratings." Thus,
the validity of any fire-danger rating system and one objective of this study was to develop procedures
determine the consequences of its inherent models for validating fire-danger rating systems. We chose
and assumptions, to validate the models from the perspective of the

The National Fire-Danger Rating System whole system. The intent was to quantify real-world
(NFDRS) was established in 1972 and revised in operational variability, in contrast to most pub-

1978 (Deeming et al. 1977). Users of this system lished work that has addressed the accuracy of fuel
include all United States Federal agencies and 35 moisture or fire behavior models through carefully

State agencies charged with forest and rangeland controlled experiments (e.g., Andrews 1980, Simard
fire protection (Deeming 1983). We have already de- et al. 1984, van Wagtendonk and Botti 1984). In our
termined the capability of various fire-danger rating study, standard weather station data were used as

systems (primarily the NFDRS) to predict wildfire system inputs, and wildfire report data were com-
occurrence in the Northeastern States (Haines et al. pared with system outputs. Another objective of this

1983). This second phase of the study concentrates study was to determine which of the NFDRS fuel
on a comparison of predicted values of potential be- models best fit field observations of fire behavior in
havior with two measures of observed fire behavior, the Northeast.

It emphasizes the use of fire-danger rating as a man- Some investigators have suggested that compar-
agement planning aid, but not, of course, as a predic- ing the NFDRS with observed fire activity is only a
tor of the behavior of an individual fire. partial indicator of system efficacy. The NFDRS, it is

The NFDRS permits managers to select one or argued, is supposed to represent an ambiguous con-
more of 20 possible fuel models; most select those cept termed "fire business." But, we must consider
fuel models based on qualitative descriptions given two facts. First, the NFDRS and fire activity are
in manuals. One difficulty with this procedure is both fuel and weather dependent. Hence, a one-to-
that each fuel model is defined by a combination of one mapping should be possible with a perfect sys-

19 parameters. No one has adequately determined tem. Second, considering fire management at-
how various combinations of these parameters inter- tributes such as area burned or suppression effort
act with each other or with the remainder of the adds a new dimension--suppression efficiency--a

system, where 114 equations are used to process 134 concept that the NFDRS makes no attempt to mea-
variables (Bradshaw et al. 1983). Thus, the physical sure. We might expect relations to be stronger be-



tween the NFDRS and fire behavior than between ing items that might be used for comparisons with
the NFDRS and suppression-dependent measures, predicted values:
and tests of those relations indicate that this is in-

1. Character of the fire on arrival: smoldering,
deed the case. Therefore, in NFDRS validation we
are largely restricted to tests that use measures of creeping, running, torching, spotting, or crown-

ing;
fire behavior. 2. Average rate ofspread at the head ofthe fire at

Validating a fire-danger rating system is a com- initial attack;
plex undertaking. A poor match between the pre- 3. Method of spread rate determination: mea-
dicted and observed data could result from inherent sured, estimated;
variability in the phenomenon studied, measure- 4. Average flame length at the head of the fire at
ment errors, sampling error, a poorly devised fire- initial attack;
danger system or, more likely, some combination of 5. Time of fire origin and time and size of fire at ,
these problems. There is no way to identify the dom- initial attack;
inant problem when validating an isolated system, 6. Cover type: grass, brush on well drained sites,
unless one attempts to redesign the system's physi- brush on poorly drained sites, conifer slash,
cal and mathematical composition and then retest, hardwood slash, old slash, oak-hickory, upland
Including other independently developed systems in conifer, lowland conifer, upland hardwood-
the analysis, however, provides an experimental conifer, lowland hardwood-conifer.
control for an inplace, operational system. Unless The weather stations and all fire control organiza-
there is a bias which favors a specific system, com- tions within the surveillance circles were visited

parison is not affected by data quality. If no one twice a year to ensure quality observations.
system performs satisfactorily, all systems have Rothermel and Rinehart (1983) recently compiled
failed or, more likely, the problem lies with the ob-
servational data. If one or more systems work well detailed field procedures and documentation neces-

sary to verify fire behavior predictions. Although
relative to the others, we can reasonably assume predating their report, most of our procedures paral-
that the data are adequate and that success and fail-
ure lie within the design of the systems. Therefore, leled their suggestions.
in addition to testing the primary system (NFDRS), Our data base included 5,166 daily weather obser-
we also tested comparable components from other vations and 2,682 wildfires occurring between
systems. March 1973 and January 1977.Editing reducedthe

records because:

METHODS 1. Suppression forces did not record essential in-
formation (777 fires).

2. The fire occurred before 10 a.m. or after 6 p.m.,
Data Collection and Procedures well before or after the 1 p.m. LST weather

station observation (623 fires); observed fire be-
We established seven study sites--three in Michi- havior measurements were made soon after ini-

gan, two in Wisconsin, and two in Pennsylvania. tial attack.
Each study area included a central fire weather sta- 3. The ratio of the recorded rate of spread to a
tion with a 35-mile 1 radius of surveillance. Simard computed rate of spread based on area increase
(1972) found that distance did not seriously affect (Simard 1977) produced an unacceptable dif-
the reliability of most wildfire predictors up to 50 fe r e n c e, i.e., out s id e t h e r a n ge (0.3 3
miles from the weather station. Each fire within the -< ratio <-3.0) (337 fires).
circles was reported on an information form we pro- 4. The recorded information produced a calcu-
vided. Besides information usually found on stand- lated value of heat per unit area that was phys-
ard fire report forms, our form contained the follow- ically impossible, given the reported cover type

(five fires with obvious recording errors). Heat
per unit area can be derived from basic physical
relationships if the rate of spread and flame
length are known (Andrews and Rothermel

1Because all fire-danger rating systems were devel- 1982, Appendix A). In brief,
oped in English units and all fire managers presently

do their day-to-day calculations by that means, we H 340 F 217- (1)
used English units in this analysis. RS



Where Tests of Fuel Models
H = heat per unit area (BTU/ft2),

F-- flame length (ft), The selection of a satisfEctory fuel modelts) de-

RS = rate of spread (ft/min). pends upon managerial needs, and it is unlikely that

The relation and scaling of NFDRS components to any one model could fulfill all possible needs. For a
measures of fire behavior (including heat per unit discussion of the physical composition of the 20 fuel

area) are given in our Appendix. After editing, a models, see Deeming et aI. (1977) and Bradshaw et
total of"940 fires remained in the sample (table 1). al. (1983), or review the short general descriptions

given below:

Use of Individual Event Versus Fuel model General description

Grouped Data A Western annual grasses
B California mixed chaparral

We treated the field observations as a collection of C Pine grass savanna

individual events rather than as grouped data be- D Southern rough
cause the first approach produced significant statis- E Hardwoods twinter)
tical results, gave reasonable error terms, and made F Intermediate brush
direct comparisons between indices possible. AI- G Short-needled pine (heavy dead)
though grouping the data by increments of index H Short-needled pine (normal deadt
values yielded much higher apparent predictive ac- I Heavy logging slash
curacy, the number of increment groups ranged from J Intermediate logging slash
8 to 15, depending upon the predictive index. This K Light logging slash
caused difficulty in directly comparing statistical L Western perennial grass
measures among indices and produced unreasonably N Sawgrass
small values for the standard errors of the estimate. O High pocosin

Table 1.--Fires by cover tyoe, season, and location

Cover type Fires Total __
Number Percent

HardwDods 322 34
Grass 317 34
Brush 153 16

Lipland conifer 54 6
Slash 38 4
Upland _nixed 36 4
Other 20 2

Total 940 1.30

Season

Spri ng 377 40
Summer 399 42
Fall 164 18

Upland
Location Hardwoods _rush Grass conifer Other

Percent ijl_cover type -
Michigan 199 31 5 30 i_ 20
Pennsylvania 430 45 37 i5 i 7
Wisconsin 311 21 _ 61 7 9



P Southern pine plantation were almost perfectly correlated to each other (al-
Q Alaskan black spruce though their positions on a fire characteristics chart
R Hardwoods (summer) differed). Models I and J were deleted because they
S Tundra represent heavier fuel loadings than are commonly
T Sagebrush-grass found in the Northeast. The remaining 12 models (B,
U Western long-needled conifer D, E, F, G, H, K, N, O, Q, T, and U) were subjected

to all tests. Preliminary results from all models are
We conducted a series of tests to determine the included in this paper. This allows the reader to par-

capability of several fuel models in the NFDRS to tially compare the performance of the deleted models
satisfy a number of needs, with that of the models that underwent complete

1. Means--Minimize the absolute difference be- analysis.
tween the average value predicted by the model
and averageobservedfire behavior.Models
that do well in this should be best for long-term Tests of Various Indices
planning, because average predicted fire be-
havior would most nearly match average ob- This part of the study ensured experimental con-
served behavior, trol by including three meteorological elements in

2. Sensitivity--Minimize the absolute difference the analysis. These weather elements provided base-
between the standard deviation of fire behavior line results against which we could compare the pre-
observations and the standard deviation of dictive capability of the more complex (and pre-
model predictions. Models that do well in this sumably superior) fire-danger rating systems. We
test would provide about the same level ofreso- also tested several fire-danger rating indices and
lution as the phenomenon being modeled and their components that might relate to fire spread or
span about the same range, energy release. These elements, indices, and compo-

3. Overall Predictive Accuracy--Explain the nents are listed below, and each is described in the
variability (R 2) of fire-behavior observations Appendix.
for all fires. Models that do well in this test

would provide the most accurate daily fire be- Weather elements
havior prediction in management areas that Relative humidity (RH)
includemanydifferentfuel types. Windspeed (WS)

4. Cover Type Accuracy--Explain the variabil- Days since 0.10" precipitation (PRECIP)
ity (R 2) of fire-behavior observations within The 1978 National Fire-Danger
various cover types. Models that do well in this Rating System (NFDRS)
test would provide the most accurate daily fire l-hour timelag fuel moisture (FM1)
behavior predictions in management areas 10-hour timelag fuel moisture (FM10)
that were predominantly of one cover type. 100-hour timelag fuel moisture (FM100)

5. Calibration---Minimize differences between 1,000-hour timelag fuel moisture (FM100o)
the regression coefficients and their ideal val- Ignition Component (IC)
ues (0 and 1). Models that do well in this test Spread Component (SC)
would correspond most nearly to observed be- Energy Release Component (ERC)
havior and would require the least calibration. Burning Index (BI)

6. Robustness--Minimize dispersion of fire be- The Canadian Forest Fire Weather
havior predictions relative to season, cover Index (Canadian)
type, and location. Models that do well in this Fine Fuel Moisture Code (FFMC)
test would be well suited to the broadest possi- Duff Moisture Code (DMC)
bleapplication. DroughtCode (DC)

Initial Spread Index (ISI)
These tests compared the NFDRS Spread Compo- Adjusted Duff Moisture Code (ADMC)

nent with the observed rate of spread and the Burn- Fire Weather Index (FWI)
ing Index with the observed flame length. Five fuel The 1964 National Fire-Danger
models that performed poorly in preliminary tests Rating System (1964-FDRS)
(average R 2 <0.10) were deleted from the complete Fine Fuel Moisture (FFM)
analyses (A, C, L, R, and S). Because responses of Fine Fuel Spread Index (FFSI)
models P and U were nearly identical in early tests, Timber Spread Index (TSI)
only U was tested for all criteria. Models I, J, and K Buildup Index (BUI)



Fire Load Index (FLI) Table 2.--0bserved and predicted means and
standard deviations of rate of spread and

Keetch-Byram Drought Index (KBDI) heat per unit area

Observations
Rate of spread Heat per unit area

RESULTS z_/_/_YSIS Mean Standard Mean Standard
deviation deviation

Ft/min BTU/ft2/

Statistical Summary of Observed All fires 9.6 9.0 568 i,007

Fire Behavior cove,-Type
_3_1/ 7.5 6321/ 1 000Hardwoods 8. /

Brush 8._i/ 7.0 1,078 1,335Grass i0.5_ i0.3 330 812
The 940 wildfires burned predominantly in hard- Upland

woods (34%), grass (34%), and brush (16%) (table 1). conifer 12.3 _2/ 14.4 7751/ 1,767

They occurred more often in spring (40%) and sum- Predict ions
mar (42%) than in fall (18%). Wisconsin's fires devel- Models Mean Standard Mean Standard

oped mostly in grass (61%), Pennsylvania's mostly in devi at ion devi at ion

hardwoods (45%) and brush (32%), and Michigan's in A 53.5 37.9 32 20
hardwoods (31%) and grass (30%). The mean rate of B 11.3 6.9 4852/ 200C 12.2 ii.0 238 105
spread reported by observers was much the same for o 27.3, , 20.0 905^, :303

all cover types: all fires (9.6 ft/min), hardwoods (8.9), E 9.'_-} 7.1 458-</ 103

brush (8.3), grass (10.5), and upland conifer (12.3) G 10.9 7.6 530i/ 303
(table 2). The highest reported rate of spread was H 3.1 2.2 310 155

I 26.4 13.9 4,413 1,320

66 ft/min and the longest reported flame length was J 17._ 9.4 2,680 74320 feet. The computed mean heat per unit area for all K 9. / 5.0 873 26O
L 53.5 40.2 63 38

fires (568 BTU/ft 2) was not significantly different N 62.3 42.5 440 98
from that of hardwoods (632) or upland conifer (775), 0 29.0 26.5 933. , 223
but was significantly different from that of grass P 5.7 4.2 54_ ! 118
(330) and brush (1,078). Q 23.5 16.8 8i8 228R 2.5 2.0 300 103

S 7.0 5.7 275 95
T 27.8 28.7 163, , 105
U 6. i 4.3 530A/ 150

Intercorrelation Among Models
-l"]No significant difference between this mean and

We computed correlation coefficients for the the mean of all fires at P < 0.001.
2/No significant difference between this mean and

Spread Component and Energy Release Component the mean of all fires at P < 0.01.
for all combinations of the 20 fuel models (table 3).

Generally, high intercorrelation suggested that the
predictive performance of many models will reflect
similar performance of many other models. Some not appear to affect model intercorrelation. But, fac-
models, such as I, J, and K, were almost perfectly tors influencing energy release, such as fuel loadings
intercorrelated in both comparisons, and in this for the 10-hour, 100-hour, and especially the live
sense they are redundant, although they do differ in fuels, are quite different. This may account for the
terms of absolute values, lowered intercorrelation between fuel models E and

On the other hand, many models were highly in- F for energy release, but there are many complex
tercorrelated either in Spread Component or Energy relationships among the parameters within each
Release Component, but not in both. For example, model and simple explanations are likely to be inad-
when we compared predicted rate of spread of equate. See Rothermel (1972) for a review of fuelcharacteristics that influence fire behavior and
model E with that of model F, the correlation was

Bradshaw et al. (1983) for a listing of the physicalr = 0.98; but for heat per unit area the correlation attributes of each fuel model.
was significantly lower (r = 0.72). The difference is
difficult to explain solely by examining the values of This discussion demonstrates the problem facing

the critical parameters that determine the composi- fire managers when they attempt to select a fuel
tion of the fuel models. The fuel bed depths for mud- model by relying on verbal descriptions or listings of
els E and F differ by a factor of 10 and the 1-hour fuel physical attributes. Without more definitive infor-
loadings differ by 60 percent. Although these mation, the selection process degenerates to a corn-
parameters affect fire spread, these differences do plex guessing game.



Table 3.--Intercorrelation of tile 20 NFDRS fuel models for Spread
Component and Energy Release Component (sample size = 940)

NFDRS MOOEL COMPARISONS
(r x 100)

SPREAD COMPONENT CORRELATIONS

A B C D E F G H I J K L N 0 P Q R S T U

A 74 79 79 75 7'4 73 16 51 51 51 98 69 77 78 81 81 .30 76 77 A
B 43 93 94 96 98 96 96 86 86 86 80 96 9i 95 94 93 93 90 96 B
C 95 51 99 98 95 96 98 74 74 74 85 95 96 99 99 99 99 94 98 C
D 95 36 97 99 96 98 99 77 77 Z7 86 97 94 99 99 99 99 93 99 D
E 91 71 93 88 98 99 99 85 85 85 81 98 94 99 98 98 98 93 99 E
F 44 95 50 36 72 98 98 88 88 88 81 99 92 97 96 95 94 91 98 F
G 32 52 37 31 49 65 99 88 88 89 79 99 92 99 97 96 96 92 99 G
H 49 67 54 46 68 79 96 84 84 84 82 98 94 99 99 98 98 93 99 H
1 38 75 45 36 63 85 94 97 99 99 51 88 71 81 77 74 73 73 84 1
J 39 19 41 36 66 88 91 96 99 99 57 88 71 8i 77 74 73 73 84 J
K 38 75 45 36 64 85 94 97 99 99 57 88 71 81 77 14 73 74 84 K
L 99 40 96 95 90 41 30 47 36 37 36 7] 83 84 87 87 86 83 83 L
N 78 83 85 78 95 78 48 65 67 69 67 76 90 97 97 95 95 90 98 N
0 64 78 70 61 83 87 81 92 92 93 92 62 83 95 94 96 96 97 94 0
P 91 66 96 92 98 68 51 69 63 65 63 90 93 84 99 99 99 94 99 P
Q 84 68 89 85 94 74 69 83 78 79 78 83 90 93 97 99 99 92 99 Q
R 95 47 98 97 93 51 44 61 51 52 51 95 82 74 97 93 99 94 98 R
S 85 55 89 87 89 63 73 83 75 74 75 84 81 87 93 97 94 94 98 S
T 94 54 90 86 89 53 24 45 37 39 37 94 80 67 88 79 87 75 93 F
U 74 87 80 70 93 91 62 80 80 83 80 72 94 93 92 93 81 85 7Z U

A B C D E F G H I J K L N 0 P Q R S T g

ENERGY RELEASE COMPONENT CORRELATIONS

The Fire Characteristics Chart Scaling on the fire characteristics chart can be
either logarithmic or linear. With a logarithmic
scale (fig. 1), the straight diagonal lines represent

The fire characteristics chart (fig. 1) illustrates flame length and the elliptical standard deviation
three primary characteristics of fire activitymrate envelopes are distorted. With a linear scale, the
of spread, flame length, and heat per unit area (An-

flame length lines are curved and the ellipses appeardrews and Rothermel 1982). The chart allows us to
visualize fire behavior in two-dimensional space. El- normal (fig. 2). The logarithmic scale allows the dis-
lipses on this chart show the means and standard play of a wider range of behavior. Main and Haines
deviations of both observed and predicted fire behav- (1983) have demonstrated the chart's usefulness in

selecting fuel models, showing observed fire behav-ior. Because some of the distributions displayed are
skewed, the elliptical nature of the joint standard ior, and illustrating means and standard deviations.
distributions may not be entirely representative in Overall fire severity, as well as the character of'
some cases. However, an elliptical approximation the fire, may be inferred from a fire's position on the
appears quite satisfactory for purposes of illustra- chart. A number of descriptors of fire behavior can
tion. locate that point: the NFDRS Spread Component,
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Figure 1.--Fire characteristics chart displaying the - \

observed behavior mean (*) and a behavior envel- __ _"_-G.
ope designating one standard deviation (heavy _o °F *grass., I_ I" (_'_ ....... brUSh
line). Also shown are the means (.)of the predicted \ "E ._,,V,_°°_ _, ,t
potential behavior for each of the 20 NFDRS fuel .H
models, along with envelopes designating one o , , , '
standard deviation for models N, O, E, and K. The o 200 400 600 s_o looo
diagonal lines represent flame lengths (ft). Loga- HEATPERUNITAREA[BTU/SQFT]

rithmic scale distorts the elliptical envelopes.
Figure 2.--Fire characteristics chart displaying ob-

the NFDRS Energy Release Component, the ob- served behavior means (*) for all fires and the fol-
served rate of spread, heat per unit area, and flame lowing groups: grass, hardwoods, upland conifers,
length. Field measurements of flame length and rate and brush. It also includes means (.) of predicted
of spread were used in figures 1 and 2. potential behavior for nine fuel models and behav-

ior envelopes designating one standard deviation
for all fires and fuel models E and K. The curved

Means diagonal lines represent flame lengths (ft).

Figure 1 includes the means of the 20 fuel model The mean predicted behavior potentials for fuel
predictions and the envelope outlining the standard models E, F, and K were the only means not signifi-
deviations for models E, K, N, and O; numerical cantly different from the all-fires observations
values are listed in table 2. Figure 2 shows the pre- (P < 0.001). There was no significant difference in
dicted average behavior for nine fuel models and five mean heat per unit area between models G, P, or U

cover type groups. Elliptical envelopes designate one and the mean of all fires (P < 0.001); at P < 0.01,
standard deviation for all fires and for models E and models B and E are also included (table 2).

K. Figure 2 shows the isolation of fuel model N from
the main body of data. Average fire severity, as well
as the character of a model, may be inferred from the Sensitivity
position of the mean value on the chart. One inter-
esting feature of figure 1 is the clustering of the The standard deviation of the observed rate of
means of nine fuel models (B, C, E, F, G, K, U, P, and spread is 9.0 ft/min for the 940 fires (table 2). Six of
S) between 238 and 873 BTU/ft 2 and between 5.7 and the 20 fuel models had a notably greater standard
12.2 ft/min. This cluster surrounds the observed deviation than this (A, D, L, N, O, and T); the y-axis

mean for all fires. Two fuel models, H and R, fell elongation was quite evident, for example, in the
below this cluster due to lower rates of spread. The envelopes for models O and N (fig. 1). These fuel
remaining fuel models were scattered over a broad models have a greater response than observed fire
range of BTU per square foot values, but all average behavior. In contrast, 10 fuel models (B, C, E, F, G,
predicted rates of spread for these models are higher I, J, K, Q, and S) had standard deviations in the
than the upper boundary of the envelope outlining range 5.0 < s -< 16.8 or within a factor of two of that
one standard deviation of observed behavior, observed. These models provide roughly the same



level of resolution as observed fire behavior. Four ,.o_ o,o.,,G O,OWN,NG T,NG_,_
models (H, P, R, and U) have limited resolution 0.9 , o, s,o,
(s -< 4.3) for rate of spread.

0.8 -_-___

The standard deviation for the observed heat per -_ o.,
o0

unit area for all fires was 1,007 BTU/ft 2 and only fuel -G0

models I and J were within a factor of two. The re- o 0.8 RUNNING FIRES

,,=, i
maining 18 fuel models had heat per unit area en- > \
velopes much smaller than those observed, indicat- _ o., ',

\\..

ing limited resolution (fig. 1). There are several _ 0.3 .
possibleexplanations: o -..

0.2 _'-.._

1. There are fixed fuel loadings in the models, but O.1 SMOLDERINGOR CREEPINGFIR¢S_ ......

highly , , , , , , , ......this feature is variable in nature, o.o , 8 _ _o _, _ 3_ _ ,o
2. Although the model yields a single Burning o MODEL E SPREAD COMPONENT

Index, intensity within individual fires can
vary by up to two orders of magnitude (Simard Figure 3._Cumulative probability of' three classes of

worst behavior for 940 fires relative to the model E
et al. 1982). Spread Component.3. The NFDRS fuel moisture models (which are

inputs to the fire behavior models) vary less
(have notably lower coefficients of variation)

One method of visualizing the relation betweenthan fuel moisture observed in the field
observed and predicted fire behavior is with

(Simard et al. 1984). weighted quartile regressions (fig. 4). The lines indi-
4. Flame lengths may be observed less accurately cate the values of each index (component) where one-

than other information (Johnson 1982). fourth, one-half, and three-fourths of the observa-
tions lie below the indicated line. One-half of all

observations lie above or below the middle quartile

Predicting Fire Behavior line. An advantage of quartile regression is its resis-
tance to outliers. Note that the ordinary least

squares (OLS) solution lies above the middle quar-
Although the NFDRS relates to the potential of an tile level due to a few extreme observed values. The

initiating fire, our data base contained reports of divergence of the upper and lower quartile lines in-
torching, spotting, or crowning (TSC). With these dicates that the variance of the observations in-

fires we hoped to identify critical levels of fire danger creases with increasing index values. At the most
when such behavior was possible. They were also elementary level, this portrayal shows that the sys-
included in the data base to maintain balance. The tern works_observed values increase with predicted
fires were identified by adjective classification: smol- values. It also shows that prediction errors are less
dering/creeping (22 percent of the total); running,
defined as spreading rapidly with a well-defined _ 32

Z

head (70 percent); and TSC (8 percent). Computa- i 28
tions based on the model E Spread Component (see

t_ 24Appendix) indicated that the probability of TSC oc-
LU

curring sometime between initial attack and con- ==20 U_,ER _.
tainment increased at a linear rate as this index _ _z'_

scale increased (fig. 3). Even at high index values _,,,_61
(SC = 40), however, the probability of TSC behavior _ _2

IZ _ MIDDLE

was less than 25 percent. In contrast, due to the ,9, 8
>

inherent temporal and spatial variability of fire dan- =uJ

(/3 4 _ LOWER
ger, there was a small but non-zero probability of o

I , J_ L 1 __ LTSC even at low index values. Running was the most % 4 8 112 16 20 24 28 32 '36

probable behavior, except at very low values of the MODELESPREADCOMPONENT
Spread Component where smoldering or creeping

was most probable. On the other hand, there re- Figure 4._Quartile regressions between observed
mained a probability that a fire would only smolder and predicted rates of spread. The OLS line is for
or creep at relatively high index values, the ordinary least squares solution.

,/



at low index values than at high index values. From
a manager's perspective it would, of course, be ad-
vantageous if the error situation was reversed.

Figure 5 shows a histogram of standardized resid-

uals for observed rates of spread using the linear
regression model. A Gaussian distribution is super- __
imposed to show the departures from normal of the =_

/
\

observed data. To test the degree of nonlinearity in _ j_ \
the data, we decomposed the error sum of squares
into a pure-error component and a lack-of-fit compo- _-,[] --
nent and then did an F test for linearity (Neter and
Wasserman 1974, p. 113). This test showed that the
regression function was not linear at the 0.05 level of

significance. In addition, we used Bartlett's test for , ,
homogeneity of the variance, grouping the observed -4 -3 -2 -, _ 2 3 4
data by index levels (Neter and Wasserman 1974, 5TRNDARDIZEDRE51DUFILE_- MODELERRTEOF5PRERD

p. 509). The observed data groups failed this test,
indicating that the increased variance with in- Figure 5.--Histogram of standardized residuals for

rate of spread. A normal distribution is superim-creased predicted value is significant; therefore, we
used a logarithmic transformation on the data. The posed on the histogram to illustrate the departures
strongest relations for rate of spread were associated from normal.

with the form: controlled experiments (e.g., Andrews 1980,
van W_gtendonk and Botti 1984). Values calculated

/_ B1
Y = Bo(X ) (2) in this study reflect what can be expected when the

system is used operationally. Although our study
where design necessitated treating the observed behavior

Y = estimated rates of spread (ft/min) data as static characteristics, a wildfire is a dynamic
X = NFDRS Spread Component. process having a wide range of temporal and spatial

The strongest relations for flame length and heat per variability. Although the same applies to prescribed
unit area were associated with the form: burns, our data generally incorporated only one or

two observations of each fire which will, in mostA
Y = Bo(B1x) (3) cases, differ from the mean value. Low R 2values will

be typical of such data; there are no alternatives if
where central weather station and wildfire observations

Y = flame length (ft) are used as the data source.

X -- NFDRS Burning Index/10. Table 4 lists the fuel model results for all fires in

There are problems in comparing a logarithmic order of decreasing average R 2. The most accurate
transformation with an untransformed function be- combined predictions for all fires were provided by
cause the former generates a multiplicative error models E and N. Some models scored relatively high
term and the latter generates an additive error term. for one attribute of fire behavior but low in the other.

Although some authorities advise caution (e.g., For example, model G had the second highest R 2
Payandeh 1981), others ignore possible implications value for rate of spread, but its performance in pre-
(e.g., Lewis-Beck 1980). We believe that compari- dicting flame length was unacceptable. Poor per-
sons of R2's and standard errors among equation formance with the latter could be due to heavy load-
forms should be interpreted with these error sources ings of 100- and 1,000-hour timelag fuels in model G.

in mind. For rate of spread, all coefficients differed from the

ideal. High intercepts and low slopes indicate that,

Overall Predictive Accuracy on the average, all models underpredicted rate of
spread at low index values and overpredicted rate of

Results of the regression analysis for all fires are spread at higher values. Model F, for example, has a
given in table 4. The most striking feature is the low crossover point at an SC value of about 7. At least

R 2 values relative to those obtained by other investi- two factors are involved in addition to possible model
gators who tested fire behavior models in carefully error. The models were designed to predict peak fire
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Table 4.--Regression coefficients to transform model-predicted
values of potential _)ehavior to observed behavior for all
fires

Rate of spread 2/ Flame lengths 3-/
Fuel__i/ Average
model R2 B0 BI R2 B0 B1 Rr-

E 0. i31 3.12 0.38 0.129 1.12 1.21 0.130
N .131 1.54 O. 38 .129 i. 06 1.09 .130
U . 115 3.85 O. 35 . 129 i. ii i. 25 .122
P .119 3.85 O. 37 .123 1.14 1.24 .121
J .137 i. 46 O. 55 .097 1. O0 I. 08 . 117
K .140 2.06 O. 55 . 092 i. 04 i. 17 .116
I .134 1.20 O. 54 . 091 i. 04 1.05 . 113
0 .083 3.25 O. 24 .133 1.24 1.07 .108
D .109 2.57 O. 32 .103 1.27 1.07 .106
Q .106 2.87 O. 29 .104 1.23 1.08 .105
F .092 3.79 O. 27 .116 1.14 1.27 .104
H .118 4.87 O. 36 .085 i. 34 1.32 .102
T . 089 4.05 O. 18 . 112 I. 48 i. I0 . i01

B .089 3.73 O. 26 .111 i. 14 1.18 .100 4/
G . 137 2.59 O. 43 I- . 059 i. 42 i-. i0 093 -
C .088 4.48 O. 20 .105 1.39 1.16 .097
R .092 5.78 O. 25 .102 1.31 1.36 .097
S .077 i. 59 O. 16 .099 I. 32 1.22 .088
L .063 4.41 O. 12 .074 1.51 i. 11 .069
A .062 4.29 O. 13 .066 1.51 i. 15 .064

i/Listed in order of decreasing combined R2.

-2/Rate of spread = B0 * (SC) BI. Standard errors
were grouped between 9.0 and 9.2.

3/Flame length = B0 * BI(BI/IO). Standard errors
were grouped between 2.0 and 2.1.

4/Models below this line are not recommended for
general use in the northeastern United States.

behavior (i.e., they have a built-in bias). Thus, re- the number of test fuel models from 20 to 12. Re-
gression equations, which predict average behavior, maining tests concentrated on this reduced set.
should have slopes less than one. Conversely, in a
perfect world there would be no fires at an index
value of zero. To the extent that there are and they Predictive Accuracy by Cover Type
spread, it is indicative of the spatial variability of
fire danger over one weather station's zone of appli- The data were stratified by cover type (hardwoods,
cation. There are no negative spread rate observa- brush, grass, upland conifer) and the regression
tions to balance the positive rates--hence the posi- analysis redone. Results for the best five models in
tive Y-intercept. Results of the overall regression each cover type are listed in order of decreasing aver-
analysis were combined with other criteria to reduce age R 2 in table 5. The most notable feature is an

10



Table 5.--Ranking of fuel model performance by major cover groups for all

seasons and locations (significant at P < 0.01) I-/

Fuel Rate of spread 2/ Flame length _/
Average R 2

Cover group model R2 Sy.x R2 Sy. X
I

Ft/min Feet

Hardwoods E O.196 7.3 O.154 i. 8 O.175
(n = 322) N .191 7.3 .148 1.8 .170

K . ?09 7.i .128 i. 8 .169
U .175 7.3 .159 I. 8 .167
G .209 7.3 . i07 i. 8 .158

Brush _<.............. .249 ............6.6 ........ .238 .... 2. I .-244"_
(n = 153) E .156 6.8 .248 2.i .202

N .164 6.8 .235 2.1 .200
U .150 6.9 .231 2.1 .191
G .179 6.8 .188 2.1 .184

Grass "E" 'i33 10.2 ....... .-084 .......1.9 .109
(n = 317) N .127 10.3 .084 1.9 .106

U . ii0 1,3.3 .083 i. 9 .097
D .116 10.3 .067 1.9 .092
8 .109 IO. 4 .071.., I. 9 .0__0

UpI and can i fer _ ................ .-(]§_6-.........14.9 NS _/ ..........................................
(n = 54) N .083 15.1 NS

F .075 15.2 NS
B .073 15.2 NS

1/Listed in order of decreasing combined R2 values within each group.
-_ZThe NFDRS Spread Component was used to predict observed rates of

spread_Tanda the Burning Index was used to predict flame lengths.- he regression equation was statistically insignificant at the 0.01
level.

increased R 2 for hardwoods and brush, indicating, as correlation may have resulted from the small sample
expected, improved accuracy as the cover types are size relative to the other cover types, coupled with
stratified. Model E was best in two cover types (hard- the highest average variability of any cover type
woods and grass) while K was best in the other two (table 2). Further, 26 percent of all upland conifer
(brush and upland conifer). In contrast, model K fires behaved erratically (and hence less predictably)
ranked low in grass cover (presumably due to its lack compared with 8 percent for all fires.
of live-fuel moisture) and E ranked low in upland
conifer (presumably due to limited inclusion of heav-
ier fuels). Models H, O, Q, and T did not rank in the Robustlle$$
top five for any cover type. The remaining models (B,
D, F, G, N, and U) were ranked in the top five in one An important factor in judging fuel model per-
to four cover types, formance is the capability to consistently predict po-

tential fire behavior across seasons, locations, and

In upland conifers, only four models yielded signif- cover types, thereby simplifying the business of fire-
icant spread predictions at P < 0.01. Although no danger rating. We calculated the root mean square
model produced significant results at the 0.01 level (RMS) of differences between the all-fires regression
for flame length, all models were positively corre- curve for each of the three groups and the individual
lated with both rate of spread and flame length. Poor season, location, or cover-type curves. The test,
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Figure 6.--(A) Comparison of observed and predicted rates of spread by season using model F Spread Compo-
nent. The mean plus two standard deviations of the Spread Component is indicated by the vertical line. The
heavy solid line denotes the all-fires regression and its confidence limits at (P = 0.01). (B) Comparison of
observed and predicted flame lengths by season using model 0 Burning Index.

which integrates RMS differences over a range of well from season to season but yielded summer
two standard deviations from the predicted mean spread rates with steeper slopes than in spring and
(table 2), provides an estimate of each model's ro- fall.

bustness. Although fuel model O produced the most disper-
sion with seasonal rates of spread, it, along with B

Models F (fig. 6a) and B produced the lowest RMS
and E, produced the least dispersion (0.3 ft) for sea-

(error) value (0.9 ft/min) among seasons for rate of sonal flame lengths (table 6b, fig. 6b). Models G and
spread, followed closely by model K (1.0) (table 6a). H failed this test because they did not produce signif-
The regression curves for spring and summer were icant fall or summer regression values.
nearly identical, but observed fall values were some-
what lower than those for the other seasons. Model Comparison of variations of the rates of spread by

O produced the greatest season-to-season dispersion cover type showed that fuel models K (fig. 7a), E, N,
(RMS = 3.8 ft/min), and models D and E were the and Q yielded the smallest RMS values (0.9 ft/min)
next-poorest performers due largely to the departure (table 6a). Because only models K, N, F, and B pro-
of the summer season regression (table 6a). Other duced significant regression equations for upland
models (G, H, N, Q, T, and U) performed moderately conifer, data for this cover type were not considered

Table 6a.--A comparative rating of fuel model prediction of rate of spread by various selection criteria I/

Fuel models

Criterion B D E F G H K N 0 Q T J

Means(ft/min & BTU/ft2) 1.7 17.7 0,2 0.4 1.3 6.5 0.3 52.72/ 19.4 13.9 18.2 3.5
(Table2) + - + + _ 0 + : - 0 0

(2) Sensitivity (Table 2) 2. i 11.0 1.9 3.1 1.4 6.8_3/ 4.0 33.5 17.5 7.8 12.7 4.7
+ 0 + 0 + 3 0 = 0 O

(3) Overall Prediction (R2) .089 .i09 .131 .092 .137 .i18 .140 .131 .083 .i06 .089 .I15 !_(Table 4) 0 + - + 0 + _ - 9 0

(4) CoverTypePrediction (R2) 7 19 31 13 32 24 29 30 ii 14 6 18 ]
(Table 5) 0 + 0 + 3 + ÷ 0 0 0

(5) Calibration5-/ 0 0 0 0 + ++ * - 0 = 0

(6) Robustness(ft/min & ft)

Seasons .9 2.36-/ 2.46-/ .9 1.69/ 1.7 1.0 1.4 3.86-/ 1.9 i.8 1.6Cover types8/ 1.2 1.0 .9 1.0 2. - 1.3 .9 .9 1.2 .9 i.i 1.3
Locations (States) 1,5 1.4 1.4 1.5 1,3 1,4 1.3 i.3 1.5 1.3 i.5 1.4
Combinedrobustness 0 - 0 0 0 + + - + 0

(7) All-criteria unweighted
total 0 -2 +4 0 +4 -I +6 0 -5 +i -7 0
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Table 6D.--A comparative rating of fuel model prediction of flame length or heat per unit area by various selection criteria

Fuel models,,

Criterion B D E F G H K M 0 Q T U

(i Means (ft/min & BTd/ft 2) 83 337 ii0 318 12 258 305 128 415-_2/ 250 405 38
(Table2) 0 - 0 - + 0 - O - 0 +

(2 Sensitivity (Table 2) 807 704 904 894 704 852 747 909 784 779 902 857
0 + - + 0 + - 0 0 0

(3 Overall Prediction (R2) 0. Ii0 0.103 0.129 0.116 0.059 _/ 0.085 0.092 0.129 0.133 0.104 0.112 0.129
(Table4) 0 0 + 0 = - 0 + + 0 0 +

(4 Cover TypePrediction (R2) 22 i0 32 23 4 I0 15 26 32 12 20 28
(Table5) 0 - + 0 - - 0 0 + 0 0 +

(5 Calibration _/ 0 + 0 - 0 = + ++ + + 0 -

(6 Robustness (ft/min & ft) 7/ 7/Seasons o .3 .4 .3 .4 - - .5 .4 ,3 .4 .5 .4
Cover types 2/ .7 .7 .7 .7 .8 .7 .8 .7 .7 .7 .7 .7
Locations (States) .5 .5 .5 .5 .6 .5 .5 .5 .5 ,5 .5 .5
Combinedrobustness + 0 + 3 - - 0 + 0 0 0

(7 All-criteria unweighted
total +i 0 +2 -3 -2 -5 0 +2 +3 +I -2 +2

L/The methods section gives a detailed explanation of each criterion. The first line in each criterion gives numerical
values; the second gives a symbolic ranking relative to the other models (++ above, + marginally above, 0 near average or
median, - marginally below, = below).

_<Models N and 0 are not recommended general use unless they are first calibrated.
for

_Mode] H had a very limited index range in predicting rate of spread.
_}Model G is not recommended for prediction of flame length.
_%A single mark (+ or -) was used if one coefficient deviated, and double mark if both deviated.

_Models E and 0 showed high dispersion for seasonal rates of spread, especially during sumner.

_}Models G and H did not produce significant results for either summer or fall flame lengths.
-'Only models B, F, K, and N produced significant results for rates of spread with conifer fires; no models gave

significant results for conifer flame lengths.

E/Model G is not recommended for brush fires.
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Figure 7._(A) Comparison of observed and predicted rates of spread by cover type using model K Spread
Component. (B) Comparison of observed and predicted flame lengths by cover types using model 0 Burning
Index. The conifer group did not produce significant results. The regression line representing hardwoods is
indistinguishable from all fires.
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in the analysis. The other models yielded RMS val- For criterion (1), we calculated the difference be-
ues ranging from 1.0/_/min for models D and F to tween the model mean and observedmean, and used
2.4 ft/min for model G. For flame length, no fuel the standard deviations of the differences to rate the
models yielded significant regression results for up- models. The smaller the difference, the better its
land conifer. A recomputation of the data using the performance. Thus, for rate of spread, models B, E, F,
other cover types showed little difference in RMS G, and K ranked higher than the others; D, O, and T
values among models (0.7 to 0.8 ft) (table 6b). Re- ranked lower, and N ranked much lower.
gression curves for fuel model O are shown in fig-
ure 7b. For criterion (2),we calculated the difference be-

tween the standard deviation of observed fire behav-

Analysis of the data by location showed little dis- ior and the standard deviation of model predictions.
persion difference for either rate of spread or flame Based on the standard deviation of the differences
length (RMS = 1.3 to 1.5 ft/min and 0.5 to 0.6 ft, for rate of spread, B, E, and G ranked notably above
respectively) (fig. 8). The small differences in flame average; N, O, and T ranked lower to much lower.

length by location (table 6b) appeared related to dif- For criterion (3), we calculated the coefficient of
ferences in cover type and, therefore, the results in- determination (R2) of observed fire behavior for all

dicated that location is not a significant factor in fires. For rate of spread, four models (E, G, K, and N)
evaluating fire-danger rating in much of northeast- were above average and four (B, F, O, and T) were
ern United States. lower.

For criterion (4) we determined the relative rank

Rating the Models (first, second, and so forth) of each model's R2 value
for each of three cover types (hardwoods, brush, and

The 12 models were rated for rate of spread and grass). Each rank was assigned a point value (first
flame length predictions by six criteria using the = 12, second = 11, etc.). Points were summed for
following method (table 6). As a first approximation, each model across the three cover types for rate of
if the value for a model was within one standard spread and flame length. For example, model E accu-
deviation of the mean value for all tested models, it mulated 31 points in rate of spread based on the
was assigned a 0; if the value was close to or greater third-highest R2 value for hardwoods (10 points,
than one standard deviation away, it was assigned a table 5), fourth-highest value for brush (9), and
+ or -, depending on which direction was superior; highest for grass (12). Upland conifer cover was not
if close or greater than two standard deviations considered due to the limited number of significant
away, it received a + + or =. regressions.
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Figure 8.---(A) Comparison of observed and predicted rates of spread by location using model G Spread
Component. (B) Comparison of observed and predicted flame lengths by location using model U Burning
Index.
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For criterion 15), the ideal regression coefficients least weight (w = 1) was assigned to the mean and

should be B, = 0 and B_ = 1. We determined the calibration criteria (1 and 5), because a user can
standard deviation of the coefficients and assigned a compensate for them. Average weight (w = 27 was
+ or - to each model depending on the closeness of assigned to the sensitivity and robustness criteria 12

the coefficients to the ideal. A double sign indicates and 6), and the greatest weight (w = 3) to prediction
that both coefficients were notably different from accuracy criteria (3 and 4).

average. For rate of spread, both coefficients were Each of the four combinations (sign, rank, un-
better than average for model K. For flame length, weighted, and weighted) was calibrated so that the
both coefficients were poorer than average for model
H. Models G and T had compensating differences for highest possible score equaled 100 and the lowest

equaled zero. Thus, the final rankings indicated not
flame length, only how well each model performed relative to

For criterion (6), we summed the three RMS val- every other model, but also how well each model
ues for each model and used the standard deviation performed in an absolute sense. Finally, the four

of the sums to assign a + or -. For rate of spread, combinations were aggregated into a composite rat-
three models (K, N, and Q)were superior and four ing by adding the scores and dividing by four
(D, G, O, and T) were inferior. (table 7). The calibration ensured that each combi-

Various models produced atypical situations for nation contributed equally to the composite rating.
some criteria, and these are noted on the bottom of We also considered balance, downgrading models (G,
table 6. At times these situations caused distribu- K, and O by 5 points) that did well for one behavior

tions that were decidedly non-normal; consequently, characteristic but poorly for the other. Table 7 also
the ratings were adjusted. The best example is the classes the models into five performance groups. In
model N value of 52.7 ft/min in criterion (1). In this general, models within a higher group did better

case model N was assigned a = and deleted from the than models in the next lower group, but differences
group. The remaining 11 models were reevaluated between closely rated models were slight:

without model N. Although the combination schemes were some-
what arbitrarily chosen, the four different proce-
dures yielded remarkably similar results. Eleven of

Composite Rating

Table 7.--Relative overall rating of NFDRS 1,If managers have one or two fuel complexes or models in the northeastern United States -/
specific uses, the best NFDRS model choices are in-

Fueldicated by the ratings for individual criteria. If a
general-purpose model is needed, however, individ- model Ra.__ti n_
ual ratings must be combined. One way to combine E 79....

individual ratings is to simply sum the +'s and -'s. N2/K 545-7
Such a scheme rewards or penalizes only models that O 62
were notably better or worse than the average. It - B 54

emphasizes the distinction between models that 02/ 53
passed or failed a test. In contrast, a rank-sum ap- G- 51
proach ignores the magnitude of differences between F 45 "
test results. For each criterion, we ranked the mud- D 44 •
els from first to last, as we did for the robustness 0 41H 33
combination, and then calculated the sum of the T 19
ranks for all criteria. By using both methods to com-

bine the rankings, we hoped to avoid possible bias i/Listed in order of estimated overall
associated with the arbitrary choice of one method, performance. Differences between models

Both of the preceding schemes assumed that all within a group are not considered
criteria were equally important. In fact, the relative significant. Ratings are on a 190-pointscale.
importance placed on each criterion will vary with a

manager's needs depending on the final use of the 2/T hese modeI s are con di t i on aI I y
results. We developed a simple weighting scheme for acceptable. The major deficiency noted in
each criterion and used it, along with an unweighted table 6 (=) must be either compensated for
combination, to determine whether or not weights or be unimportant in the use to which the
would affect the final ordering of the models. The model is put.
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the 12 models had a range of three or less between from model K to I and J. Tables 2 and 4 present the
the highest and lowest rank across all four combina- data needed for four of the six tests fbr models I and
tions. Thus, the composite rating is not dependent on J (means, sensitivity, overall predictive accuracy,
the characteristics of any single procedure. We and calibration). Based on these four criteria, model
therefore conclude that the composite ranking is I would have been marginally poorer than K, and
generic--any reasonable scheme would yield much model J would have been marginally better. Greater
the same outcome, average spread rates would require calibration prior

A slightly different method of ranking was used by to use. In essence, if models I or J were desirable for
Haines et al. 1985 (see their table 5). They calculated some purpose, they could be substituted for K with
a ratio rather than a difference for criterion (2), and confidence.

also rated only 9 rather than 12 fuel models. These Although fuel model N ranked within the second
variations in procedures resulted in some changes in group in table 7, it was inconsistent. It was the only
final rankings from those shown in table 7. For ex- model to appear in the top five places in all four fuel
ample, models K and E interchanged first and sec- groups (table 5). It was best or second best only in the
ond positions, two less important calibration tests, and it was the

Model E Coverall score = 79) is alone in the first worst model in three tests. Model N showed signifi-
group (table 7); it was first in every ranking combi- cantly substandard performance in the rate-of-
nation. It was average or better in 11 of the 12 tests spread means and sensitivity tests (table 6a). This
(best or second best in 5 tests). Only flame length problem would have to be either overcome or of little
sensitivity was below average. For most areas in the consequence to the user.

northeastern United States, model E appears to be Although model U didn't quite reach the rating of
the best general-purpose model because it is suited models E or K, it is also a good general-purpose
to a wide variety of conditions and applications. Up- model. It appeared in the top five places in three of
land conifer forests are a notable exception to model the four cover groups (table 5). Interestingly, the
E's overall superiority, exception was upland conifer (model U was intended

The second group includes three models (K, N, and to represent long-needled pine standsmsee Methods
U). Model K was the best overall spread rate predic- section). Model U was one of only two models that
tor (it was first or second in four of six tests). It was was below average in only one test (flame length
only average at predicting energy release (causing it calibration), and it was above average in 3 of 12
to be downgraded slightly). Model K was best in tests. In other words, model U is not outstanding, but
brush and upland conifer. The lack of live fuel load- it appears generally reliable. Because models U and
ing in model K may account for its good performance P appear similar in construction and are highly in-
in the latter case. Its second-highest overall rating, tercorrelated (SC = 0.99 and ERC = 0.92, table 3), P

however, appears counterintuitive, but there is a should perform about as well as U.
possible explanation. When fuels are green in the

The next two groups in table 7 include models withNortheast, their moisture content may be so high as
to overwhelm other environmental conditions and lower overall performance. Model B's performance is

preclude wildfire occurrence. In fact, in the North- most like that of U. The former was below model U
east observed live fuel moisture typically exceeds in five tests, better in four, and tied in three. Like U,

model B was second in just one test and it was one ofthat allowed by the NFDRS models by factors rang-
ing from 1.5 to 4 times (Loomis et al. 1979, Loomis the top fuel models in two fuel groups. Its overall
and Blank 1981). In this situation, living vegetation predictive accuracy was next to last in the list of
may be like a switch that turns fires on and off acceptable models (table 4). In general, model B had
rather than a heat sink that reduces spread rates no outstanding attributes, but few negative ones--
and intensity. Our behavior data came only from in other words, its performance was average. It is
days on which fires occurred and grew to reportable most likely that one of the previously recommended
dimensions--days on which high-moisture-content models would be superior for most Northeastern ap-
fuels would have to have been cured or nearly so to plications.

permit fire spread. Thus, although live-fuel moisture As with model U, Q was a steady performer. It was
certainly plays a key role in fire behavior, our re- the only model that was average (10 times)or above
sults suggest that the role is not well defined in this (twice) in every test. It never ranked better than
region, fourth nor worse than ninth, and was the best-

The high intercorrelation between models I, J, and balanced model tested (spread rate and flame
K (R 2 = 0.99 in all cases) permits us to extrapolate lengths). In summary, model Q can also be classed as
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average. Given the superior performance of other treatments with random combinations of treatment
models, its use should be justified using criteria levels. 2

other than those employed in this study. One simple relationship provided some insights.
Model G's performance might be best classified as The four lowest ranked models, in terms of overall

a paradox (even more so than with model N). Model predictive accuracy (A, L, R, and S--table 4), have
G ranked first or second in 5 of 12 tests but llth or 10-hour fuel loadings of 0.5 tons/acre or less (Brad-
worse four times. It either worked very well or failed shaw et al. 1983, p. 38). Two other models with the
miserably! Its predictive accuracy for energy release same loadings (D and T) finished 9th and 12th, re-
is considered unacceptable (table 41, yet it was first spectively, in our ranking system. Models A, L, R,
in the flame length mean and sensitivity tests. It and S also have extremely light 1-hour loadings (0.5
was the second-best spread rate predictor (first or tons/acre or less), but models D and T have 1-hour
second in three of six tests), but it did poorly (llth) loadings of 2.0 and 1.0 tons/acre (within the range of
in robustness. Model G was one of the top five models higher ranked models). We therefore suspect that
in two fuel types. Although model G cannot be rec- the 1-hour loading is not a limiting factor in poor
ommended as a general-purpose model, it may be model performance. We further infer that in the

useful as a "specialty" spread rate predictor. Northeast, light 10-hour loadings (0.5 tons/acre) re-
sult in poor-performance fire behavior models. Ex-

Models D and F both ranked below average more trapolation, however, is less certain. Models C and
often than above. Both were first through third in
just one test; both were never ranked worse than H, for example, yielded the next-poorest predictions

and have 10-hour fuel loadings of only 1.0 tons/acre.
10th. Both were in the top five models in just one Model P, on the other hand, also has 1.0 tons/acre of
cover type. Both models ranked below average for 10-hour fuels and we assume (by association with
general use with no notable "specialty" purposes, model U) that it should be a reasonably good

Model O was the worst-balanced model tested. It predictor.

was the best flame length model (first through third Four of five models (A, F, L, and T) with a 15
in four of six tests) but the worst (of the models

considered so far) in rate of spread (10th or worse in percent moisture of extinction (ME) ranked eighth
or lower; B also has a 15 percent ME. It was 14th in

every test). Clearly, model O would be a poor
general-purpose model but a good energy release terms of predictive accuracy (table 4), but it finished5th overall based on all tests. Possibly 4 tons/acre of
"specialty" model. 10-hour fuels helped overcome the 15 percent ME in

The last group includes the only two models (H model B. In general, a 15 percent ME may preclude
and T) that ranked average or below average in optimum model performance in the Northeast. Note
every test. With 10 better models to choose from, it that the two poorest performance models (A and L)
is hard to imagine a general purpose for which these have no 10-hour fuels coupled with a 15 percent ME.

two models would be needed. Models H and T, along Again, extrapolation is problematic. Models C, H,
with the previously deleted models (A, C, L, R, and and U have ME's of 20 percent. Models C and H were
S), are not recommended for general use in the

not high performers but U was fourth highest. Note,
Northeast. however, that models C and H have 10-hour loadings

of 1.0 tons/acre. Perhaps two marginal factors com-

Fuel Model Composition- bined to yield poor performance (model P has an ME

Performance of 30 percent).

In general, poor model performance appears to be
These data provided an opportunity to postulate associated with low ME's (20%<-) and low 10-hour

causal mechanisms. We considered the relative per- fuel loadings (1.0 tons/acre). These results agree
formance of the 20 fuel models as observational data, with the findings of Simard et al. (1984), who found

and could then conceptually equate fuel model that 10-hour fuel moisture was the best predictor of
parameters (Bradshaw et al. 1983) to experimental observed fine fuel moisture. Low 10-hour loadings
treatments. Our task was to learn something about
how the NFDRS, with its 114 equations and un-
counted assumptions, relates fuel model parameters 2Nineteen parameters are used to define each fuel
to fire behavior. The task was complicated by the model, but six are constant and, therefore, do not
fact that there are only 20 models to compare when directly contribute to observed model differences; one
drawing conclusions concerning 12 interrelated only affects a component not tested here.
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reduce the contribution of the 10-hour moisture val- Comparative Performances of Fire

ues to the NFDRS-calculated average fine thel mois- Activity Predictorsture. They also found that observed moistures were

much higher than those calculated by the NFDRS.
The second step in our validation study comparedHence, a low ME should lead to poor fuel model

performance, the performances of various meteorological ele-
ments, fuel moisture models, and fire danger indices

In contrast to poor fuel model performance, it is listed in the Appendix. The predictors of behavior
not as easy to identify fuel parameters associated potential that did not yield regression values signif-
with high model perfbrmance. Table 8 lists 10 icant at P < 0.01 were eliminated, leaving a short-

parameters associated with three of the higher ened list categorized by three groups: meteorological
ranked rate of spread predictors (K, E, and G) and elements, fuel moisture models, and fire-danger in-
energy release predictors (O, E, and U). Insight into dices (table 9). All predictors were compared with
a solution requires finding common parameter char- observed behavior using functions (2), (3), and:

acteristics within each of the two groups of fuel mod- _,
els. Unique results provide important clues to the Y = Bo + B1X (4)
adequacy of our methods. For example, model E ap-
pears in both groups; thus E should have one or more The functional forms listed in table 8 gave the

parameters in common with each group, but there highest R 2 values for each predictor. In all cases
must be at least two groups of parameters--one for standard errors were similar within groups and were
rate of spread and one for energy release. Further- higher for rate of spread than for flame length.

more, model G was a highly ranked rate of spread Among the meteorological elements, PRECIP and
model but a poor predictor of energy release. Model RH produced very low regression values and by
K was similar but to a lesser extent (best for rate of themselves appeared to be poor predictors of rate of
spread, average for energy release). Model O compli- spread and flame length. Windspeed produced some-
ments these results (low for rate of spread, best for what better results with rate of spread.
energy release). Any favorable characteristics for
these unbalanced models on one side of the ledger The fuel moisture models behaved as expected,
should be absent on the other, yielding comparatively low R2 values, because they

do not incorporate windspeed. The FFM in the 1964-
The model ranking results should provide clear, FDRS was the only fuel moisture model that gave

unambiguous tests, but an analysis of the data in statistically significant results when compared with
table 8 provides no easy answers. Only one firm con- flame length.
clusionemerges:Resolvingthe question ofwhat gen-
erates good model performance is not likely to be The NFDRS values for model E in table 9 are the
found by simply examining fuel model parameters, same as those listed in table 4. Other fuel model

Rather, more detailed experiments will have to be values in table 4 can also be compared with fire-
made in which the NFDRS is disaggregated below danger indices listed in table 9. The fire-danger in-
the system level and multiple parameter/model in- dices from the Canadian system (ISI, FWI) yielded
teractions are examined. This is well beyond the lower R 2 values than most NFDRS fuel models; the
scope of the present paper. FWI was an especially poor predictor of flame

Table 8.--Fuel model parameters for three higher ranked rate of spread and energy release predictors 1/
....

Par ame ter,,

Fuelload Heat Fuelbed

Predictor l-hr lO-hr lO0-hr 1,000-hr .....Woody Herbaceous 1-hr SA/V2-/ content ME depth _

......... Tons/acre .......... (Ft -I) BTU/Ib Percent Ft
Rateofspread

ModelK 2.5 2.5 2.0 2.5 .... 1,500 8,000 25 0.4
ModeIE I.5 2.0 .25 -- O.5 O.5 2,000 3,000 25 .6
Mode]G 2.5 2.0 5.0 12.0 .5 .5 2 000 8,000 25 1.0

Energyrelease

Mode]0 2.0 3.0 3.0 2.0 7.0 -- 1,500 9,000 30 4.0
ModelE 1.5 2.0 .25 -- .5 .5 2,000 3,000 25 .6
ModelU 1.5 1.5 1.0 -- .5 .5 1,750 8,000 20 .5

1/I
g/RnCludes only those parameters that vary amongthe highest ranked models.- atio of surface area to volume.
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Table 9.--Comparative performance of coi_ponents 1-/ of fire-danger rating syste_,_s
based on predictions of rate of spread and flame length using windspeeds and
slopes from fire sites

Rate of spread Flame length _
Mathematical

Fire activity _ Mathef_atical R2 function
predictor R_ Sy.x function Sy.x

Meteorological elements
WS O.069 9.3 (3) NS ,_S
RH .032 9.4 (3) 0.022 2.2 (3)

Fuel moisture models
FFM .022 9.5 (3) .052 2.2 (3)

FM1 .03i 9.4 (3) NS NS
FFMC .033 9.4 (3) NS NS

Fire-danger indices
SC & 81 (Model E) .131 9.1 (2) .129 2.1 (3)
TSI .105 9.2 (2) .128 2.1 (3)
FFSI .097 9.2 (2) .134 2.1 (3)
ISI .094 9.2 (2) .105 2.1 (4)
FLI .083 9.3 (2) .110 2.1 (4)
FWI .073 9.3 (3) .034 2.1 (4)

-i/Only those predictors with significant regression statistics are included.

length. These results may reflect the fact that the well in specific areas, but were substandard in
Canadian system was designed for a specific fuel others. In selecting a model, a manager will have to
type--jack pine and lodgepole pine (Appendix)--and decide which fuels or test criteria are most impor-
our data base included only 6 percent upland tant and choose the fuel model on that basis.
conifers (table 1). The fire-danger indices from the Our results confirmed the general belief that no
1964-FDRS, the TSI, and the FFSI produced similar single fuel model is best for all purposes. In fact, one
results. The FFSI gave the highest R 2 value for model (O)was best at predicting flame length but
flame length of any index tested, although the index second worst at predicting rate of spread. We also
was not significantly better, found that fuel model performance did not necessar-

No index that measures drought or long-term dry- ily reflect the qualitative descriptions that are often
ing produced significant results. This included the used for model selection. For example, fuel models A
longer timelag fuel moistures in the NFDRS, the and L were among the poorest predictors of fire be-
DMC, ADMC, and the DC in the Canadian system, havior in grass. The performance of some models
the BUI in the 1964-FDRS, and the KBDI. was also counterintuitive. For example, the second-

best overall fuel model (K) does not include live-fuel
moisture. Such anomalies indicate that although we

SUMMARY AND CONCLUSIONS may understand some fire behavior processes, we
are weak in understanding how they all interact in
the complex situation of fire-danger rating. Our re-

We compared the performance of 20 NFDRS fuel sults suggest that poor fuel model performance in
models in predicting potential rate of spread and the Northeast may be related to low 10-hour fuel
flame length for 940 wildfires in the Northeast, and loading (1.0 ton/acre -<) and low moisture of extinc-
evaluated the system as it is used operationally, tion (20%-<).
Standard weather station data were used as inputs,
and supplemental fire behavior data were compared Since the release of the 1978 revision of the
with system outputs. Model E was the best general- NFDRS, some Northeastern fire managers have
purpose model; models K, N, and U ranked slightly questioned the applicability of any of the 20 fuel
lower. Other models, such as G and O, performed models to their specific areas and suggested that
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APPENDIX

FIRE-DANGER RATING SYSTEMS roundwood 1.,"4to 1 inch in diameter and, very
roughly, the layer of litter extending from .just

The following gives a briefoverview of the various below the surface to 3,'4 inch below the surface.

systems discussed in this paper and defines the The FM_(_o (100-hour timelag fuel moisture) esti-
terms used. Although the systems are designed to mates the moisture content of dead fuels consist-

categorize a number of physical features, the follow- ing of roundwood of 1 to 3 inches in diameter and
ing discussion concentrates only on the components the forest floor from 3/4 inch below the surface to
that contribute to the examined predictors of poten- 4 inches below the surface.
tial fire behavior. Complete discussions are avail-

able in the original publications documenting each The FM1ooo f l,000-hour timelag fuel moisture) esti-
system, mates the moisture content of dead fuels consist-

ing of roundwood 3 to 8 inches in diameter and the

The 1978 National Fire-Danger forest floor more than 4 inches below the surface.

Rating System (NFDRS) The IC gives a rating of the probability that a fire-
brand will ignite wildland fuels, causing a fire

Deeming et al. (1977) state that this system re- that requires suppression action.
lates only to an initiating fire--i.e., a fire that does
not behave erratically. The NFDRS addresses only The SC is a rating of the forward rate of spread of a

head fire and is scaled directly to rate of spread inthose aspects of fire activity involving occurrence
feet per minute.and behavior. Aspects of containment such as acces-

sibility, soil condition, and resistance to line con- The ERC yields a rating related to the available
struction must be evaluated by other means.

energy per unit area within the flaming front at
Ratings are relative, not absolute. Indices and the head of a fire. It is equal to the heat per unit

their components were designed to be linearly re- area (BTU/ft 2) divided by 25.
lated to the fire problem. This design specified that
when the value of the component or index doubled, The BI gives a rating related to the contribution of
the rated activity also doubled. The basic observa- fire behavior to the effort of containing a fire. It is
tions that implement the system are taken once a equal to 10 × flame length (if).
day when fire danger is normally the highest, in the
open, at midslope, on southerly or westerly expo-
sures. The system, therefore, evaluates the worst The Canadian Forest Fire Weather
conditions offire danger that might occur on a rating Index (FWI)
area during the rating period.

The NFDRS begins by estimating four classes of According to Van Wagner (1974), the designers'
dead and two classes of live fuel moisture (FM): 1-, major goal was a fire-danger index that would yield
10-, 100-, and 1,000-hour timelag, woody, and herba- uniform results across Canada and be based on once-
ceous. These moistures are combined with wind- a-day weather observations. The system is designed
speed to produce three fire behavior components: ig- for a specific fuel typemjack or lodgepole pine.

nition (IC), spread (SC), and energy release (ERC). This empirically derived system consists of six
The SC and the ERC combine to produce a burning components. There are three moisture codes: fine
index (BI). fuel moisture (FFMC), duff moisture (DMC), and

drought (DC) These moisture codes are combinedThe FM_ (1-hour timelag fuel moisture) estimates
the moisture content of the fine fuels. These fuels and windspeed is added to form two intermediate

consist of dead herbaceous plants and roundwood componentsJthe initial spread index (ISI) and the
less than 1/4 inch in diameter. This also includes adjusted duff moisture code (ADMC)--and a final

the uppermost layer of litter on the forest floor, product, the fire weather index (FWI). This Cana-
dian system and the system used in Australia ap-

The FMI0 il0-hour timelag fuel moisture) estimates pear to be similar (Reifsnyder 1978). The FWI is also
the moisture content of dead fuels consisting of used operationally in New Zealand.
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The FFMC represents the moisture content of litter The FFM uses the stage of the herbaceous vegeta-
and other cured fine fuels in a forest stand in a tion along with the ambient temperature and rela-
layer of about 0.05 lb/ft 2 dry weight, tive humidity to produce an analog of moisture in

fine fuels.
The DMC represents the moisture content of loosely

compacted, decomposing organic matter 2 to The FFSI provides a measure of the relative rate of
4 inches deep and weighing about 1 lb/ft 2 when forward movement of surface fires in light fuels.

dry. The TSI provides a measure of the relative rate of
The DC represents a deep layer of compact organic forward movement of surface fires in heavier

matter weighing about 10 lb/ft 2 when dry. fuels.

The ISI combines wind and the FFMC to represent The BUI provides a measure of the progressive dry-
rate of spread, without the influence of variable ing of fuels and, according to the system designers,
quantities of fuel. is related to the moisture content of 10-day time-

lag fuels. It appears to be more representative of
The ADMC combines the DMC and the DC to repre- fuels having a 5-day timelag constant (Haines et

sent the total fuel available to the spreading fire. al. 1976).

The FWI combines the ISI and the ADMC to repre-
sent the intensity of the spreading fire as energy

output rate per unit length of fire front. The Keetch-Byram Drought

1964-National Fire-Danger Rating Index (KBDI)

System (1964-FDRS) Fire-danger rating systems in the United States
have never used a slow-response drought index.

The 1964-FDRS was the first attempt at designing Keetch and Byram (1968) developed this index to
a national system, but this system did not progress provide fire management with a scale of reference
beyond the spread phase (USDA Forest Service for estimatingdeep-dryingconditionsin areas where1964). It estimates fine-fuel moisture (FFM) and

such information was needed for fire suppression.
combines it with windspeed to yield a Fine Fuel
Spread Index (FFSI). Another component of the sys- The KBDI uses daily maximum temperatures and
tem estimates a Timber Spread Index (TSI) and a 24-hour precipitation amounts to estimate the pre-
slow-response estimate of drying called a Buildup cipitation necessary to return the soil to full field
Index (BUI). capacity.
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